From an Eight-Component Self-Sorting Algorithm to a Trisheterometallic Scalene Triangle

Kingsuk Mahata, Manik Lal Saha, and Michael Schmittel*
Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany

Received September 17, 2010; E-mail: schmittel@chemie.uni-siegen.de

Abstract

Using motifs from 3-fold completive self-sorting in an eight-component library, we report on the design and fabrication of a fully dynamic trisheterometallic scalene triangle, a demanding supramolecular structure that complements the so far known triangular structures.

To fit with the trend of evolution ("Evolutionary processes are anamorphic, or complexity-generating"), ${ }^{1}$ artificial self-assembly will need to master vastly enhanced complexity and diversity issues, for example by enlarging the number of different components and interactions. ${ }^{2}$ While biological self-assembly follows intricate orthogonal self-sorting algorithms, ${ }^{3-5}$ artificial self-sorting is still limited in orthogonality. Indeed, most of the known self-sorting processes entail either multiple species or a single assembly along with excess ligand(s). ${ }^{3-5}$ In contrast, we seek to merge all members of a library in a single multicomponent aggregate employing completive ${ }^{5}$ and integrative 4 self-sorting. As an example we elaborated the selfassembly of a dynamic bimetallic trapezoid from a six-component $\mathrm{A}^{1} \mathrm{~A}^{2} \mathrm{D}^{1} \mathrm{D}^{2} \mathrm{D}^{3} \mathrm{D}^{4}(\mathrm{~A}=$ acceptor, $\mathrm{D}=$ donor $)$ library. ${ }^{5}$ Extending the above conceptual insights to self-sorting in an eight-component $A^{1} A^{2} A^{3} D^{1} D^{2} D^{3} D^{D} 4 D^{5}$ library (Scheme 1), we report herein on the fabrication of a trisheterometallic scalene triangle, a demanding and until now unrealized supramolecular structure (Scheme 2) that complements the so far known triangles (monometallic and equilateral, ${ }^{6}$ bisheterometallic, ${ }^{7,8}$ and isosceles ${ }^{9,10}$).

Self-sorting in metallosupramolecular structures is managed by various factors, such as steric and electronic effects, $\pi-\pi$ interactions, and metal-ion coordination specifics. For the self-sorting eight-component library depicted in Scheme 1, we chose to blend our previous $\mathrm{A}^{1} \mathrm{~A}^{2} \mathrm{D}^{1} \mathrm{D}^{2} \mathrm{D}^{3} \mathrm{D}^{4}$ library ${ }^{5}$ with the pyridine-zinc porphyrin binding motif. ${ }^{11}$ To our delight, full orthogonality of the pyridine-zinc porphyrin binding motif with the two other individual heteroleptic metal-ligand combinations was established. Only 3

Scheme 1. Self-Sorting in a $A^{1} A^{2} A^{3} D^{1} D^{2} D^{3} D^{4} D^{5}$ Library

$\left[\left[\mathrm{Cu}(1)_{2}\right]^{+}+[\mathrm{Cu}(1)(\mathbf{2})]^{+}+[\mathrm{Cu}(\mathbf{2})(4)]^{+}+[(1)(\mathbf{6})]+[\mathrm{Zn}(\mathbf{1})]^{2+}+[\mathrm{Zn}(1)(2)]^{2+}+[\mathrm{Zn}(\mathbf{2})(\mathbf{4})]^{2+}\right]$ $\left.\left[\mathrm{Cu}(\mathbf{2})_{2}\right]^{+}+[\mathrm{Cu}(1)(3))_{2}\right]^{+}+[\mathrm{Cu}(2)(5)]^{+}+[(2)(6)]+[Z n(2))^{2+}+\left[\mathrm{Zn}(1)(3)_{2}\right]^{2+}+[\mathrm{Zn}(2)(5)]^{2^{+}}$ $\left[\mathrm{Cu}(3)_{4}\right]^{+}+[\mathrm{Cu}(1)(4)]^{+}+\left[\mathrm{Cu}(3)_{2}(4)\right]^{+}+[(3)(6)]+\left[\mathrm{Zn}(3)_{6}\right]^{2+}+[\mathrm{Zn}(1)(4)]^{2+}+\left[\mathrm{Zn}(3)_{4}(4)\right]^{2+}$ $\left[\mathrm{Cu}(4)_{2}\right]^{+}+[\mathrm{Cu}(1)(5)]^{+}+\left[\mathrm{Cu}(\mathbf{3})_{2}(5)\right]^{+}+[(4)(6)]+\left[\mathrm{Zn}(4)_{3}\right]^{2+}+[\mathrm{Zn}(1)(5)]^{2^{+}}+\left[\mathrm{Zn}(3)_{2}(5)\right]^{2+}$ $\left.\left.\left[\mathrm{Cu}(\mathbf{5})_{2}\right]^{+}+[\mathrm{Cu}(\mathbf{2})(\mathbf{3})]^{+}+[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+}+[(5)(\mathbf{6})]+\left[\mathrm{Zn}(\mathbf{5}) \mathrm{I}_{2}\right]^{2+}+[\mathrm{Zn}(\mathbf{2})(\mathbf{3}))_{3}\right]^{2+}+[\mathrm{Zn}(4)(\mathbf{5})]^{2^{+}}\right]$

$$
[\mathrm{Zn}(1)(2)]^{2+}+[(3)(6)]+[\mathrm{Cu}(4)(5)]^{+}
$$

Scheme 2. Synthesis of the Supramolecular Scalene Triangles \mathbf{T}_{n}

out of 35 plausible combinations, i.e. $[\mathrm{Zn}(\mathbf{1})(\mathbf{2})]^{2+},[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+}$, and [(3)(6)], were afforded while making full use of all library members in a 3 -fold completive self-sorting (readily derived from ${ }^{1} \mathrm{H}$ NMR analysis; see Supporting Information). Obviously, none of the available bi- or tridentate ligands can amalgamate readily with the zinc porphyrin 6 due to steric bulk, all the more as this would lead to uncoordinated nitrogen ligands in the overall mixture, which would violate the maximum site occupancy rule. ${ }^{3 \mathrm{a}}$

With the complexes $[\mathrm{Zn}(\mathbf{1})(\mathbf{2})]^{2+},[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+}$, and $[(\mathbf{3})(\mathbf{6})]$ representing the three corners of a scalene triangle, all tools are available for designing the three different sides along with their binding units (Scheme 2). Thus, we instated $\mathbf{1}$ and $\mathbf{6}$ as the termini of the phenanthroline-porphyrin hybrid 7 being readily accessible via Sonogashira cross-coupling (Supporting Information). Along a known procedure, ${ }^{5} \mathbf{2}$ and $\mathbf{4}$ were merged in the terpyridine-phenanthroline ligand $\mathbf{8}$, while the complexation properties of $\mathbf{3}$ and $\mathbf{5}$ were amalgamated within the phenanthroline-pyridine hybrid 9 . Details of the synthesis are contained in the Supporting Information. For all ligands, spacers were chosen to render the building blocks $\mathbf{7 - 9}$ unequal in length.

In a first set of experiments all components (7, 8, 9, Zn^{2+}, and Cu^{+}) were mixed in 1:1:1:1:1 ratio and refluxed for 2 h in acetonitrile/DCM (2:1). After obtaining a clear dark-violet solution the reaction mixture was characterized by electrospray ionization mass spectroscopy (ESI-MS), ${ }^{1} \mathrm{H}$ NMR, COSY, diffusion-ordered spectroscopy (DOSY), elemental analysis, and differential pulse voltammetry (DPV). ESI mass spectra (Figure 1) showed only peaks that were in full agreement with $\mathbf{T}_{1}=[\mathrm{CuZn}(\mathbf{7})(\mathbf{8})(\mathbf{9})]\left(\mathrm{OTf}_{2}\right)_{2}\left(\mathrm{PF}_{6}\right)$. Most importantly, the full integrity of the scalene triangle $\mathbf{T}_{\mathbf{1}}$ was unambiguously proven by intense signals at $m / z=894.9$, associated with $[\mathrm{CuZn}(7)(8)(9)]^{3+}$ and at $m / z=1415.5$, associated with $[\mathrm{CuZn}(7)(8)(9)]\left(\mathrm{PF}_{6}\right)^{2+}$.

Data from ${ }^{1} \mathrm{H}$ NMR and DOSY NMR (Supporting Information) further supported the structural assignment of $\mathbf{T}_{\mathbf{1}}$. A single diffusion

Figure 1. ESI-MS of the scalene triangle \mathbf{T}_{1}. Inset: Experimental (black line) and calculated (red line) isotopic distribution of $[\mathrm{CuZn}(7)(\mathbf{8})(9)]^{3+}$.
coefficient as well as a single set of signals provided evidence for the clean formation of the scalene triangle \mathbf{T}_{1} in solution. In order to evaluate the connectivity of the ligands in \mathbf{T}_{1} we paid special attention to several characteristic proton resonances. For example, the pyridine protons (α, β) of $\mathbf{9}$ in \mathbf{T}_{1} experienced a diagnostic upfield shift from 8.61 to 2.62 ppm and from 7.38 to 5.66 ppm in the ${ }^{1} \mathrm{H}$ NMR, respectively, a typical shift of pyridine protons upon axial coordination to a zinc porphyrin. ${ }^{11}$ Thus, following our design, ligand 7 is indeed connected to 9 by a zinc porphyrin-pyridine interaction (Scheme 2). Diagnostically shifted b-H, b'-H protons of 7 yielded further information regarding the connectivity in $\mathbf{T}_{\mathbf{1}}$. The ca. 0.60 ppm upfield shifts of $\mathrm{b}-\mathrm{H}$ and $\mathrm{b}^{\prime}-\mathrm{H}$ protons (from 7.40 and 7.50 ppm in 7 to 6.78 and 6.95 ppm in $\mathbf{T}_{\mathbf{1}}$) are indicative of a $\left[\mathrm{Zn}\left(7_{\text {phenAr } 2}\right)\left(\mathbf{8}_{\text {terpy }}\right)\right]^{2+}$ complex. ${ }^{5,12}$

The suggested structure requires that $\mathbf{T}_{\mathbf{1}}$ is chiral due to the stereogenic $\left[\mathrm{Cu}\left(\boldsymbol{8}_{\text {phen }}\right)\left(\boldsymbol{9}_{\text {phenAr2 }}\right)\right]^{+}$unit. As a result, several groups being homo- or enantiotopic in the individual ligands become diastereotopic in \mathbf{T}_{1}. For example, the four methoxy groups of $\mathbf{7}$ show up as four singlets at $2.85-2.93 \mathrm{ppm}$. Their shift is indicative of a $\left[\operatorname{Zn}\left(\boldsymbol{7}_{\text {phenAr } 2}\right)\left(\mathbf{8}_{\text {terpy }}\right)\right]^{2+}$ complex. ${ }^{5}$ Likewise, the two mesityl protons (x^{\prime}) become diastereotopic in $\mathbf{T}_{\mathbf{1}}(\delta=5.92,6.10 \mathrm{ppm})$. As these protons show up at $\delta=6.92 \mathrm{ppm}$ in 9 , their characteristic upfield shift in \mathbf{T}_{1} confirms the $\left[\mathrm{Cu}\left(\boldsymbol{8}_{\text {phen }}\right)\left(\boldsymbol{9}_{\text {phenAr2 }}\right)\right]^{+}$complexation. ${ }^{7}$

The assortment of the metal ions in the two metal exchanging corners of the scalene triangle was interrogated by DPV probing the Cu^{+}oxidation wave. Due to the diagnostically different redox potentials of $[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+}\left(E_{1 / 2}=0.44 \mathrm{~V}_{\mathrm{SCE}}\right),[\mathrm{Cu}(\mathbf{1})(\mathbf{4})]^{+}\left(0.29 \mathrm{~V}_{\mathrm{SCE}}\right)$ and $[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+}\left(-0.21 \mathrm{~V}_{\mathrm{SCE}}\right),{ }^{5}$ a mixture of copper(I) complexes would show several copper(I) oxidation waves. A single oxidation wave at $0.76 \mathrm{~V}_{\text {SCE }}$ in $\mathbf{T}_{\mathbf{1}}$ (Supporting Information) confirmed the presence of only one type of copper(I) complex, pointing persuasively to the formation of $\left[\mathrm{Cu}\left(\mathbf{8}_{\text {phen }}\right)\left(\boldsymbol{9}_{\text {phenAr2 }}\right)\right]^{+}$. A combination of ESI-MS, ${ }^{1} \mathrm{H}$ NMR, DPV, DOSY, and elemental analysis thus unambiguously provided evidence for the clean formation of scalene triangle \mathbf{T}_{1}.

Despite the many different entities potentially arising from five donor and three acceptor units, the exclusive formation of \mathbf{T}_{1} based on thermodynamic equilibration is no surprise in light of the 3-fold completive self-sorting described in Scheme 1 and the design criteria applied to ligands $\mathbf{7 - 9}$. Thus, it seems to be a promising strategy for future multicomponent structure design to first probe completive self-sorting in a library of mononuclear cornerstones and then to merge the motifs in multiligand building blocks for integrative selfsorting.

In another experiment, we replaced Zn^{2+} by Hg^{2+} following a similar protocol to fabricate the trimetallic scalene triangle $\mathbf{T}_{2} .7$, $8,9, \mathrm{Hg}^{2+}$, and Cu^{+}were mixed in a 1:1:1:1:1 ratio and refluxed for 2 h in acetonitrile/DCM $=2: 1$. As for $\mathbf{T}_{1},{ }^{1} \mathrm{H}$ NMR and ESIMS data supported the clean formation of the trisheterometallic scalene triangle \mathbf{T}_{2}. As Hg^{2+} binds more strongly than Zn^{2+} in $\left[\mathrm{M}(\text { terpy })\left(\text { phenAr } \mathrm{r}_{2}\right)\right]^{n+}$ complexes, ${ }^{13}$ we tested metal exchange in \mathbf{T}_{1} upon addition of Hg^{2+} (1 equiv). Complete transformation of \mathbf{T}_{1} to \mathbf{T}_{2} was noticed within one day as evidenced from ESI-MS.

Figure 2. Energy minimized structure of the scalene triangle $\mathbf{T}_{\mathbf{1}}$. Counteranions are not included.

As all attempts to obtain a crystal structure of $\mathbf{T}_{\mathbf{n}}$ were met with failure, MM^{+}force field computations and molecular dynamics on \mathbf{T}_{n} provided some insight about their structure as scalene triangles. Taking the metal-metal distance as a measure, the three metal corners of \mathbf{T}_{1} are separated by $1.44,1.60$, and 1.84 nm in the energy minimized structure (Figure 2) and by $1.44,1.66$, and 1.84 nm in $\mathbf{T}_{\mathbf{2}}$ (Supporting Information), nicely illustrating the geometrical scalene arrangement of \mathbf{T}_{n}.

In conclusion, we report on the fabrication of two scalene triangles \mathbf{T}_{n} that were designed along the eight components of a 3 -fold completive self-sorting library. The triangles are scalene from both a geometrical and a compositional point of view. Precise tuning of steric and electronic effects, $\pi-\pi$ interactions, and metal-ion specifics led to the formation of a single species in solution excluding other aggregates. To the best of our knowledge, $\mathbf{T}_{\mathbf{1}}$ and \mathbf{T}_{2} are the first supramolecular scalene triangles with three different self-assembled corners. Furthermore, $\mathbf{T}_{\mathbf{2}}$ is the first trisheterometallic scalene triangle. Such structural diversity in a rather simple supramolecular architecture points the way to promising devices with electronically different subunits. ${ }^{14}$

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the University of Siegen for financial support.

Supporting Information Available: Experimental procedures and spectroscopic data are provided for $\mathbf{7 , 9}$, and all triangular assemblies \mathbf{T}_{n}. This material is available free of charge via the Internet at http:// pubs.acs.org.

References

(1) Wicken, J. S. J. Theor. Biol. 1979, 77, 349.
(2) (a) Schmittel, M.; Mahata, K. Angew. Chem., Int. Ed. 2008, 47, 5284. (b) Granzhan, A.; Riss-Johannessen, T.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2010, 49, 5515.
(3) (a) Krämer, R.; Lehn, J.-M.; Marquis-Rigault, A. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5394. (b) Ulrich, S.; Lehn, J.-M. J. Am. Chem. Soc. 2009, 131, 5546. (c) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P. J. Acc. Chem. Res. 2009, 42, 1554. (d) Jiang, W.; Schäfer, A.; Mohr, P. C.; Schalley, C. A. J. Am. Chem. Soc. 2010, 132, 2309. (d) Parimal, K.; Witlicki, E. H.; Flood, A. H. Angew. Chem., Int. Ed. 2010, 49, 4628. (e) Molla, M. R.; Das, A.; Ghosh, S. Chem.-Eur. J. 2010, 16, 10084. (f) Ulrich, S.; Petitjean, A.; Lehn, J.-M. Eur. J. Inorg. Chem. 2010, 1913.
(4) Jiang, W.; Schalley, C. A. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10425.
(5) Mahata, K.; Schmittel, M. J. Am. Chem. Soc. 2009, 131, 16544.
(6) (a) Zangrando, E.; Casanova, M.; Alessio, E. Chem. Rev. 2008, 108, 4979. (b) Maran, U.; Britt, D.; Fox, C. B.; Harris, J. M.; Orendt, A. M.; Conley, H.; Davis, R.; Hlady, V.; Stang, P. J. Chem.-Eur. J. 2009, 15, 8566. (c) Song, X.; Liu, X.; Oh, M.; Lah, M. S. Dalton Trans. 2010, 39, 6178. (d) Miras, H. N.; Chakraborty, I.; Raptis, R. G. Chem. Commun. 2010, 46, 2569.
(7) Schmittel, M.; Mahata, K. Chem. Commun. 2008, 2550.
(8) Ghosh, S.; Turner, D. R.; Batten, S. R.; Mukherjee, P. S. Dalton Trans. 2007, 1869.
(9) (a) Schmittel, M.; Mahata, K. Inorg. Chem. 2009, 48, 822. (b) Schmittel, M.; Mahata, K. Chem. Commun. 2010, 46, 4163.
(10) Jiang, J.; MacLachlan, M. J. Org. Lett. 2010, 12, 1020.
(11) (a) Kishore, R. S. K.; Paululat, T.; Schmittel, M. Chem.-Eur. J. 2006, 12, 8136. (b) Kishore, R. S. K.; Kalsani, V.; Schmittel, M. Chem. Commun. 2006, 3690, and references cited therein.
(12) Terpy $=\left[2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}\right]$ terpyridine; phen $=[1,10]$-phenanthroline; phenAr2 $=2,9$-diaryl $[1,10]$-phenanthroline.
(13) Schmittel, M.; Kalsani, V.; Kishore, R. S. K.; Cölfen, H.; Bats, J. J. Am. Chem. Soc. 2005, 127, 11544.
(14) (a) Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4763. (b) Kurth, D. G. Sci. Technol. Adv. Mater. 2008, 9, 014103.

JA108419K

